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Abstract
Following Shastry and Sutherland I construct the super Lax operators for the
Calogero model in the oscillator potential. These operators can be used for
the derivation of the eigenfunctions and integrals of motion of the Calogero
model and its supersymmetric version. They allow us to infer several relations
involving the Lax matrices for this model in a fast way. It is shown that the
super Lax operators for the Calogero and Sutherland models can be expressed
in terms of the supercharges and so-called local Dunkl operators constructed
in our recent paper with M Ioffe. Several important relations involving Lax
matrices and Hamiltonians of the Calogero and Sutherland models are easily
derived from the properties of Dunkl operators.

PACS numbers: 03.65.Fd, 02.30.Ik, 11.30.Pb

1. Introduction

The most well-known exactly solvable and integrable quantum systems of N particles on a
line are given in [1, 2]. One of them is the Calogero model [3–5], with the Hamiltonian

H = −� + ω2
N∑

i=1

x2
i +

N∑
i �=j

l2 − l

(xi − xj )2
. (1)

When ω = 0 this model is called the free Calogero or Calogero–Moser [6] one (following the
notations of [7]).

Another is the trigonometric Sutherland or TS model [8–11] with the Hamiltonian

H = −� +
N∑

i �=j

l2 − l

sin2(xi − xj )
. (2)
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There is also a hyperbolic variant of the Sutherland model (HS) [8], where there is a hyperbolic
sine in the denominator. For brevity we will call the above three models the Calogero-like ones.
These models correspond to the AN−1 root system; generalizations for other root systems also
exist [1, 12–18].

The formalism of quantum Lax operators [1, 2, 7, 8, 12, 19–22] plays an important role in
the proof of the integrability of the Calogero-like models and derivation of their eigenfunctions.

The supersymmetric [23, 24] generalization of the Calogero model was constructed in
[18, 25, 26] and that of the Sutherland model was considered in [27, 28].

In the paper [27], the super Lax operators were set forth. These operators are bilinears in
the fermionic variables, the coefficients being the standard quantum Lax matrices. The super
Lax operators allow one to derive the standard relations involving the Lax matrices in a faster
and simpler way.

Apart from the Lax formalism there is another powerful approach to the proof of the
integrability and exact solvability of the Calogero-like models that uses the Dunkl operators
[29–34]. Its supersymmetric generalization was constructed in [28, 35, 36]. In [37] another
relation between the Dunkl operators and supersymmetry was considered. Namely, the
so-called local Dunkl operators were constructed that intertwined the matrix Calogero-like
Hamiltonians corresponding to some irreducible representations of SN . For the class of Young
diagrams described in [38], some local Dunkl operators were found to coincide with the
components of the supercharges (after the separation of the centre-of-mass (CM) part in the
latter). This derivation is analogous to the projection method of [28] that works only for
the supersymmetric models.

The main result of the present work is that another class of the local Dunkl operators of
[37] coincides with the CM-independent part of the components of the super Lax operators
of [27].

Thus one has a means to construct the Lax operators for a given system provided it
possesses a set of Dunkl operators. This can be useful e.g. for the Calogero-like systems for
root systems other than AN−1 or for elliptic Calogero models.

The paper is organized as follows. In section 2 we briefly review the formalism of the
supersymmetric quantum mechanics (SUSY QM) [23, 24] and its application to the Calogero-
like models. The super Lax operators for the free models [27] are constructed. The components
of these operators in the one-fermionic sector turn out to coincide with the usual Lax matrices.
We also construct the super Lax operator for the Calogero model which we believe is new.
It can be used for the construction of the eigenstates of the model and for the proof of its
integrability. Some useful identities for the total sums of the Lax matrices [12] are formulated.
They are to be proved in the subsequent sections.

In section 3 the bosonic [39] and fermionic Jacobi variables with reference to the Calogero-
like models [38, 40] are introduced. The separation of the CM part in the superHamiltonian
and supercharges [38] is briefly reviewed. It is shown that in the case of the Calogero model
one can obtain the identities for the total sums of Lax matrices given in [19, 20] from the
properties of the super Lax operators constructed in section 2.

At the beginning of section 4 the local Dunkl operators [37] are presented. The relations
in which they intertwine the matrix Hamiltonians for the Calogero-like models are given.

Then a special kind of the Clebsh–Gordan coefficients for the local Dunkl operator of
a free Calogero-like model is constructed with the help of fermionic variables. Thus we
give an explicit example of the exactly solvable Dirac-like operator of [37]. The new local
Dunkl operator can be viewed as a component of a certain super Lax-like operator, bilinear in
fermions. This super Lax-like operator turns out to coincide with the CM-independent part of
the usual super Lax operator [27] written in the Jacobi variables. Therefore one can infer the



Equivalence of the super Lax and local Dunkl operators for Calogero-like models 10675

fact that the super Lax operator commutes with the superHamiltonian from the intertwining
relations of the local Dunkl operators and matrix Hamiltonians derived in [37]. The CM-
dependent part of the super Lax operator is expressed in terms of the supercharge operators,
which allows us to prove an identity from [19, 20].

Then we use the same Clebsh–Gordan coefficients for the local Dunkl operators for the
Calogero model. The result again has the form of components of certain super Lax-like
operators. The latter, instead of commuting with the superHamiltonian, will obey oscillator-
like commutation relations with it. As in the free case, the new super Lax-like operators
coincide with the CM-independent components of the usual super Lax operators written in
the Jacobi variables. This again allows one to infer the oscillator-like commutation relations
between the super Lax operators and the Hamiltonian from the intertwining relations of the
local Dunkl operators and matrix Hamiltonians. For the Calogero model the CM-dependent
part of the super Lax operator is again expressed in terms of the supercharge operators, which
allows us to prove an identity from [7].

The possible extension of the results of the paper onto the case of the Calogero-like
models corresponding to general root systems is briefly discussed in the last subsection.

2. Supersymmetric Calogero-like models

2.1. Multidimensional SUSY QM [24]

The supersymmetric quantum system for arbitrary number of dimensions N consists [24] of
the superHamiltonian H and the supercharges1:

Q− ≡
N∑

j=1

ψjQ
+
j Q+ = (Q−)† =

N∑
j=1

ψ+
j Q−

j (3)

with the algebra

(Q+)2 = (Q−)2 = 0 H = {Q+,Q−} (4)

[H,Q±] = 0 (5)

where ψi, ψ
+
i = (ψi)

† are fermionic operators:

{ψi, ψj } = 0
{
ψ+

i , ψ+
j

} = 0
{
ψi, ψ

+
j

} = δij . (6)

The Hamiltonian and supercharge operators act in the tensor product of the fermionic
Fock space with the basis

ψ+
i1

· · · ψ+
iM

|0〉 ≡ |i1 · · · iM〉 i1 < · · · < iM � N M � N
(7)

ψi |0〉 = 0 i � N

and some bosonic Fock space where the operators Q±
i act. From this moment onwards we

will not mention the bosonic Fock space for brevity.
The superHamiltonians condidered in this text conserve the fermionic number N ≡∑N

j=1 ψ+
j ψj . Hence, they have the following block-diagonal form in the basis (7)

H = diag(H (0), H(1), . . . , H(N−1), H (N)) (8)

where the matrix operator H(M) with dimension2 CM
N × CM

N is the component of H in the
subspace with fixed fermionic number M. The components with M are equal to 0, and N are
thus scalar operators, and are not marked by boldface.

1 Here and below the indices i, j, k, . . . range from 1 to N .
2 The CM

N here are the binomial coefficients.
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Table 1. Functions and constants appearing in the supercharge and superHamiltonian.

Name of
model V (x) V ′(x) E0

TS l cot x −l/ sin2 x −(N − 2)(N − 1)Nl2/3
HS l coth x −l/ sinh2 x −(N − 2)(N − 1)Nl2/3
Free Calogero l/x −l/x2 0

2.2. Supersymmetric Calogero-like models [25–38]

The free supersymmetric Calogero-like models are characterized by the bosonic parts of the
supercharges (3) of the form

Q±
l = ∓∂l −

N∑
l �=k

V (xl − xk) ≡ ∓∂l −
N∑

l �=k

Vlk (9)

where V(x) are given in table 1 and Vlk ≡ V (xl − xk).
With such supercharges the superHamiltonian (4) turns into [38]

H = −� +
N∑
i �=l

V 2
il +

N∑
i �=j

KijV
′
ij − E0. (10)

The constants E0 are given in table 1. The operator Kij [27] has the form

Kij ≡ ψ+
i ψj + ψ+

j ψi − ψ+
i ψi − ψ+

j ψj + 1 = 1 − (
ψ+

i − ψ+
j

)
(ψi − ψj)

= Kji = (Kij )
† (11)

and is the fermionic exchange operator:

Kijψ
+
i = ψ+

j Kij Kijψi = ψjKij (12)

Kijψ
+
k = ψ+

k Kij Kijψk = ψkKij k �= i, j. (13)

The Calogero model is characterized by the bosonic parts of the supercharges (3) of the
form

Q±
l = ∓∂l + ωxl − l

N∑
l �=k

(xl − xk)
−1.

Accordingly, the superHamiltonian (4) of the model has the form

H = −� + ω2
∑

i

x2
i +

∑
i �=j

l2 − lKij

(xi − xj )2
+ 2ωN − ω(1 + (N − 1)(Nl + 1)). (14)

The exchange operator Kij in (10) and (14) commutes with N , and therefore assumes a
block-diagonal form in the basis (7), similarly to the superHamiltonian:

Kij = diag
(
T

(0)
ij , T(1)

ij , . . . , T(N−1)
ij , T

(N)
ij

)
. (15)

The components (8) of the superHamiltonian have the form

H(M) =
−� +

N∑
i �=l

V 2
il − E0

 I +
N∑

i �=j

T(M)
ij V ′

ij
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for the free Calogero-like models, and

H(M) =
[
−� + ω2

N∑
i

x2
i + ω(2M − 1 − (N − 1)(Nl + 1))

]
I +

N∑
i �=j

l2I − lT(M)
ij

(xi − xj )2
(16)

for the Calogero model.
One can easily see that T

(0)
ij = 1 = −T

(N)
ij . Thus the component H(0) coincides up to an

additive constant with the scalar Hamiltonian (2) for the Sutherland model and with (1) for
the Calogero model.

The elements of the matrix T(1)
ij have the form(

T
(1)
ij

)
lk

≡ δlk − δliδki − δlj δkj + δliδkj + δlj δki . (17)

2.3. The super Lax operators

As noted in [27], the superHamiltonian (10) satisfies the following commutation relation:

[H,L] = 0 (18)

where the operator L is the so-called super Lax operator given by

L = Lkmψ+
k ψm Lkm = −i∂kδkm + i(1 − δkm)Vkm. (19)

Here, Lkm are the elements of the well-known Lax matrix L, and ψ+
k , ψm are the fermionic

operators (6).
In section 4.2 of this paper we present an alternative proof of (18) using the Dunkl

operators.
One may also note that [N ,L] = 0, so the super Lax operator conserves the fermionic

number and has the block-diagonal form

L = diag(0, L(1), . . . , L(N−1), L(N)). (20)

Note that L(N) = −i
∑

k ∂k .
We will use below the following consequence of the anticommutaion relations (6). For a

fermionic quantity

A =
∑
k,l

Aklψ
+
k ψl (21)

the matrix elements in the one-fermionic sector are

〈i|A|j 〉 = Akl〈0|ψiψ
+
k ψlψ

+
j |0〉 = Aij (22)

so its first block on the diagonal in the form (20) is A(1) = A. For example, L(1) = L.
The standard relation involving the Lax matrices is

[L,H (0)] = [M, L] (23)

where H(0) is the Hamiltonian of a scalar free Calogero-like model, and the elements of M
have the form

Mlk = 2(1 − δlk)V
′
lk − 2δlk

∑
j �=k

V ′
kj . (24)

Equation (23) was shown in [27] to follow from (18), but not vice versa.
The Lax matrix for the free Calogero-like models satisfies the following identity [21]:

Ts(L2) = H(0) (25)
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which is used in the proof of integrability of the free Calogero-like models [22]. For a matrix
A the total sum Ts is defined as

TsA =
N∑

i,j=1

Aij .

Equation (25) will also be proved in section 4.2.
The following identity is also true [27]:

[H(0), In] = 0 In = TsLn. (26)

The involution of the quantities In is proved in [19, 20].
It turns out that the construction of the super Lax operators is possible for the Calogero

model too. To the author’s knowledge this construction has not been proposed before; thus the
rest of the subsection contains new material. Namely, define the following fermionic operator:

L± = L±
kmψ+

k ψm L±
km = Lkm ± iωxkδkm Lkm = −i∂kδkm + i

1 − δkm

xk − xm

(27)

where Lkm are the elements of the Lax matrix for the free Calogero model. The operators (27)
and the superHamiltonian (14) satisfy the following generalization of (18):

[H,L±] = ±2ωL±. (28)

The proof of these relations can be found in subsection 4.3. Equation (28) describes an
oscillator-like algebra and hence can be used for the construction of the spectrum of the
superHamiltonian (14) and proof of its integrability. Namely, the ground-state wavefunction
for the (super)Calogero Hamiltonian (1), (14) is [3, 25]:

ψ0 = exp

−ω

2

N∑
j=1

x2
j

 N∏
i<k

|xi − xj |l . (29)

Applying powers of the operators (3) and (27) to this wavefunction, one can get the excited
states of H. The integrals of H are linear combinations of the monomials in Q±,L± in which
the power of L+ is equal to the power of L−. Examples of such are

L1 = L+L− L2 = L−L+. (30)

Similarly to the free Calogero models, [N ,L±] = 0, so

L± = diag(0, L(1)±, . . . , L(N−1)±, L(N)±).

It follows from (22) that L(1)± = L±, where L± is the matrix with the elements (27).
One can infer the usual relations [21] involving the Lax matrices from (28) in the following

way:

±2ωL± = [L±, H(1)] = [L±, H(1) − IH(0) + IH(0)]

where H(1) is the first component (16) of the superHamiltonian. Hence,

[H(0), L±] = [L±, M] ± 2ωL±

where M ≡ H(1) − I(H (0) + 2ω) is the same standard matrix (24) as in the free case. It follows
from (16) and (17) that its elements are

Mmk = 2l(δmk − 1)(xm − xk)
−2 + 2lδmk

∑
j �=k

(xk − xj )
−1.

For the Calogero model we can derive an analogue of (25). Namely, define the quantities

L1 = L+L− L2 = L−L+.
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The matrices Lj are the components of the operators Lj (30) in the sector N = 1. It turns out
[21] that

H(0) = TsL1 = TsL2 + const. (31)

A variant of the proof can be found in subsection 4.3.
An analogue of (26) can also be proved:

[H(0), Ijn] = 0 Ijn = TsLn
j j = 1, 2; (32)

a proof is given in section 3. The involution of the quantities Ijn is proved in [7, 12].
One can also define the following operators [21]

Om
p = Ts((L−)m(L+)p) (33)

that commute with H(0) as[
H(0), Om

p

] = 2(p − m)ωOm
p . (34)

The proof is again given in section 3. Applying the operators (33) to the ground-state
wavefunction (29) one gets the excited states of H(0) for the Calogero model.

3. The Jacobi variables and SUSY QM

3.1. Definitions [38]

The bosonic [39] and fermionic [38] Jacobi variables are defined as

yk = Rkmxm φk = Rklψl (35)

where Rkl is a real orthogonal matrix; see [38] for details. In this text it will be important for
us that RNl = N−1/2, i.e.,

yN = 1√
N

N∑
i=1

xi φN = 1√
N

N∑
i=1

ψi.

The new fermionic variables (35) satisfy the standard anticommutation relations:

{φk, φl} = 0
{
φ+

k , φ+
l

} = 0
{
φk, φ

+
l

} = δkl . (36)

With the help of the fermionic Jacobi variables one can separate the centre-of-mass term
in the supercharges (3) in the following way [38]:

Q± = q± + Q±
C H = h + HC (37)

where

Q−
C ≡ −φN

∂

∂yN

Q+
C = φ+

N

∂

∂yN

HC = −∂2
/
∂y2

N (38)

for the free models, and

Q−
C ≡ φNQ+

N Q+
C ≡ φ+

NQ−
N Q±

N = ∓ ∂

∂yN

+ ωyN (39)

HC = −d2
/

dy2
N + ω2y2

N + ω
(
2φ+

NφN − 1
)

(40)

for the Calogero model.
These new quantities satisfy the relations of the following superalgebra [38]:

(q±)2 = (
Q±

C

)2 = {
q±,Q±

C

} = 0

{q+, q−} = h
{
Q+

C,Q−
C

} = HC [h,HC] = 0 (41)

[H, q±] = [h, q±] = [HC, q±] = [H,QC
±] = [h,QC

±] = [HC,QC
±] = 0.
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3.2. Application to the Lax operators

If one uses the fermionic Jacobi variables, it is natural to go from the basis (7) to a new one3

(here we follow [38]):

φ+
β1

· · ·φ+
βM

|0〉 ≡ |β1 · · · βM〉 ≡ |β〉 φ+
Nφ+

β1
· · · φ+

βM
|0〉 ≡ |Nβ〉

(42)
β1 < · · · < βM M < N.

In the new basis (42), the superHamiltonian (10) of the free Calogero-like models will take
the form

H = diag(H̃ (0), H̃(1), . . . , H̃(N−2), H̃ (N−1), H̃ (0), H̃(1), . . . , H̃(N−2), H̃ (N−1))

where

H̃(M) =
−� +

N∑
i �=l

V 2
il − E0

 I +
N∑

i �=j

T̃(M)
ij V ′

ij (43)

and T̃(M)
ij are matrices4 with the elements(

T̃
(M)
ij

)
γβ

= 〈γM · · · γ1|Kij |β1 · · · βM〉 (44)

where Kij is the fermionic exchange operator (11). It is proved in [38] that such matrices form
the representation5 of SN with the Young diagram (N − M, 1M).

The superHamiltonian (14) of the Calogero model in the Jacobi basis will have the form

H = diag(H̃ (0), H̃(1), . . . , H̃(N−2), H̃ (N−1),

H̃ (0) + 2ω, H̃(1) + 2Iω, . . . , H̃(N−2) + 2Iω, H̃ (N−1) + 2ω) (45)

where

H̃(M) =
[
−� + ω2

N∑
i

x2
i + ω(2M − 1 − (N − 1)(Nl + 1))

]
I +

N∑
i �=j

l2I − lT̃(M)
ij

(xi − xj )2
.

Now one can use the above formalism from [38] to prove (34) in the same way as (26)
was proved in [27].

First take into account that for any fermionic quantity A that commutes with N ,

TsA(1) =
N∑

i,j=1

A
(1)
ij =

∑
i,j

〈i|A|j 〉 = N〈N |A|N〉 (46)

where A(1) is the component of A in the sector with N = 1. Then, define the quantities

Om
p = (L−)m(L+)p.

It follows from (28) that[
H,Om

p

] = 2(p − m)ωOm
p .

From (46) we get

Om
p = Ts[(L−)m(L+)p] = N〈N |Om

p |N〉.
3 The indices of the Jacobi variables denoted by Greek letters range from 1 to N − 1; those denoted by Latin letters
range from 1 to N.
4 One should not confuse T̃(M)

ij with T(M)
ij from (15) which corresponds to a reducible representation of SN .

5 We will denote the irreducible representations of SN by their Young diagrams. The standard notation [41] for the
Young diagram containing λi cells in the ith line is (λ1, . . . , λn); if a diagram contains m identical lines with µ cells,
it is denoted by (. . . , µm, . . .).
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Therefore,

2(p − m)ωOm
p = 2(p − m)ωN〈N |Om

p |N〉 = N〈N |[H,Om
p

]|N〉 = N〈N |HOm
p |N〉

−N〈N |Om
p H|N〉 = (H (0) + 2ω)N〈N |Om

p |N〉 − N〈N |Om
p |N〉(H (0) + 2ω)

= [
H(0), Om

p

]
.

In exactly the same way one can deduce (32) from (18).

4. Connection between the local Dunkl operators and the super Lax operators

4.1. Intertwining relations involving the local Dunkl operators

In a recent paper [37] we considered the matrix Calogero-like Hamiltonians of the form

HA =
−� +

N∑
i �=l

V 2
il

 I +
N∑

i �=j

TA
ijV

′
ij (47)

where A is an irreducible representation of the group SN of permutations of N particles, and
TA

ij are the matrices of this representation.
We will need below the representation L with the Young diagram (N − 1, 1). Suppose

we have an irreducible representation A of SN , such that the interior product L × A contains
A. Then the following commutation relation is true [37]:

[HA, DAA] = 0 (48)

where DAA is the so-called local Dunkl operator. It is a dim A × dim A matrix with elements

DAA
σα = (ξβ|σ)Rξk

−i∂kδβα + i
∑
m�=k

Vkm

(
T A

km

)
βα

 . (49)

Here, Rξk is the matrix of transition from the particle coordinates to the Jacobi ones;
(ξβ|σ) ≡ (Lξ,Aβ|Aσ) are the Clebsh–Gordan coefficients for the contribution of A in
L × A.

Note that the SUSY QM intertwining relations for the Calogero-like systems can also be
deduced from the local Dunkl operators [37].

It was proved in [38] that for the TS model, equation (48) allows us to find the spectrum
of DAA ≡ DA because we know the spectrum of HA. However, definition (49) of DA contains
a Clebsh–Gordan coefficient (Lξ,Aβ|Aσ) that is relatively hard to find, except for the cases
discussed below and in [37].

In the case of the Calogero model, the following analogue of (48) was set forth in [37]:

[HA, DAA±] = ±2ωDAA± (50)

where HA is the matrix Calogero Hamiltonian for the representation A:

HA =
−� + ω2

∑
i

x2
i +

∑
i �=j

l2

(xi − xj )2
+ Nω

 I −
∑
i �=j

(
l

(xi − xj )2
+ a

)
TA

ij (51)

and the elements of the matrix DAA± are

DAA±
σα = (ξβ|σ)Rξj

(−i∂j ± iωxj )δβα + il
∑
m�=j

(
T A

jm

)
βα

xj − xm

 . (52)

We will see in section 4.3 that the components of the operators L± can be reduced to a
partial case of (52) (see equations (69) and (70)).
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4.2. The connection between the local Dunkl operators and the super Lax ones

In this subsection we are to prove that the super Lax operator (19) can be expressed in terms
of the local Dunkl operators (49), and the commutation relations (18) follow from (48).

Let us suppose that

A = (N − M, 1M) (53)

in (48) and (49). Then we can define the Clebsh–Gordan coefficients in (49) in the following
way:

(1ξ,Mβ|Mζ) = 〈ζ |Cξ |β〉 Cξ ≡ Rξkψ
+
k ψk = C

†
ξ (54)

where ψi, ψ
+
i are the fermionic variables satisfying (6); Rξk is the matrix of transition (35),

from the particle coordinates to the Jacobi ones; |β〉 are the states from (the first half of) the
basis (42), such that N |β〉 = M|β〉;φN |β〉 = 0.

This is possible because the coefficients (54) satisfy the following characteristic condition
of the Clebsh–Gordan coefficients [41]:(

T L
ij

)
αξ

(
T̃

(M)
ij

)
γβ

(1ξ,Mβ|Mζ) = (1α,Mγ |Mν)
(
T̃

(M)
ij

)
νζ

(55)

where T̃(M)
ij is the matrix (44), and

TL
ij = T̃(1)

ij (56)

is a matrix from the representation L. The proof of (55) can be found in appendix B.
As shown in [38], for the representations from the class (53) one can go from the matrix

Hamiltonian HA (47) in (49) to H̃(M) = HA − E0I that is given by (43), E0 being given in
table 1.

Now we can plug the Clebsh–Gordan coefficients (54) into definition (49). After some
algebra (see appendix C for details) we arrive at the equality

DA
σα ≡ D(M)

σα = 〈σ |Cξ |β〉Rξk

−i∂kδβα + i
∑
m�=k

Vkm

(
T̃

(M)
km

)
βα


= 〈σ |L|α〉 + iN−1/2M

∂

∂yN

δσα (57)

where L is the super Lax operator (19). Thus we see that the matrix elements of the local
Dunkl operator in the basis (42) coincide with the matrix elements of the super Lax operator
up to a scalar term.

The operator (57) has the structure of a matrix element connecting two fermionic basis
states 〈α| and |β〉. It is natural to consider a fernionic operator built from these matrix elements:

D =
∑

M,σ,α

D(M)
σα

[|σ 〉〈α| + |Nσ 〉〈αN |]. (58)

In (58) and all formulae below, the states |σ 〉, |α〉 have fermionic number M, if not specified
otherwise.

It follows from (48) that the operator (58) commutes with the superHamiltonian (10).
The components D(M) (57) ofD have smaller dimension than L(M), i.e., the block-diagonal

structure of D is more detailed than that of L. Note that D(0) = 0.
After a couple of pages of calculations we can conclude that

D = L + iN−1/2

[
Q+φN − φ+

NQ− +
(
N − 2φ+

NφN

) ∂

∂yN

]
. (59)

The details are given in appendix D.
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Equation (59) gives a simple form of the operator D, and its components D(M) that can
be considered as exactly solvable Dirac-like operators.

It immediately follows from (59) that [L,H] = 0 since all other operators in (59) have
already been seen to commute with H. The only nontrivial commutaion relation of this kind:
[φN,H] = [

φ+
N,H

] = 0 follows from (37) and (38).
One can also check that

[h,D] = 0 (60)

where h = H + ∂2

∂y2
N

is the centre-of-mass independent part (37) of the superHamiltonian.

Equation (60) means that D plays the same role for h as L does for H. However, h and D
do not depend on the CM variables6 yN, φN and φ+

N . Thus we have obtained a separation of
variables in the (super) Lax operators.

One can also go from the Dunkl operators to the Lax ones by using the approach [28] that
does not employ Jacobi variables. However, then it would be difficult to get separation of the
centre-of-mass coordinate, and obtain the operators D.

The centre-of-mass terms can also be separated in the supercharges in (59), according
to (37). The result will be

L = D + iN−1/2

[
φ+

Nq− − q+φN − N
∂

∂yN

]
. (61)

Equation (61) can be used for the derivation of (25):

Ts(L2) = H(0).

Namely, taking into account (46), we get

Ts(L2) = N〈N |L2|N〉 = N〈N |
[
D + iN−1/2

(
φ+

Nq− − q+φN − N
∂

∂yN

)]2

|N〉

= N〈N |iN−1/2

[
φ+

Nq− − N
∂

∂yN

]
iN−1/2

[
−q+φN − N

∂

∂yN

]
|N〉

= −〈N | − φ+
Nq−q+φN + N 2 ∂2

∂y2
N

|N〉 = 〈0|q−q+ + q+q− − ∂2

∂y2
N

|0〉

= 〈0|H|0〉 = H(0)

where we have used the fact that D|N〉 = 0; 〈N |D = 0, because D(0) = 0.
We see that (25) actually follows from the supersymmetry of the model.

4.3. The super Lax operators for the Calogero model

It will be convenient below to rewrite the super Lax operator (27) of the Calogero model in
the form

L± = L ± δL δL ≡ iωxkψ
+
k ψk

where L is the super Lax operator (19) for the Calogero model without the harmonic term.
Similarly one can rewrite the local Dunkl operator (52) as

DAA± ≡ DAA ± δDAA

where DAA is the local Dunkl operator (49) for the free Calogero model, and δDAA is the
operator with the elements

δDAA
σα = (Lξ,Aα|Aσ)Rξkiωxk.

6 In the case of D it can be proved by rewriting the operator (19) in the Yacobi variables and using (61).
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For the case A = (N −M, 1M) and the choice (54) of the Clebsh–Gordan coefficients we
have equation (57). Similar relation is true for δDAA ≡ δD(M) and δL:

δD
(M)
γ δ = 〈γ |δL|δ〉 − iωN−1/2MyNδσα.

The proof is completely similar to that of (57), so we omit it.
Similarly to the free case, one can define the operators

δD ≡
∑

M,σ,α

δD(M)
σα

[|σ 〉〈α| + |Nσ 〉〈αN |]
D± ≡ D ± δD =

∑
M,σ,α

D(M)±
σα

[|σ 〉〈α| + |Nσ 〉〈αN |] (62)

where D(M) is the local Dunkl operator for the free Calogero model, and

D(M)± ≡ D(M) ± δD(M).

Then it follows from (50) that

[H,D±] = ±2ωD± (63)

if we go from the Hamiltonian (51) to (45), following [38], as in the free case.
The calculation of δD is completely similar to that of D in appendix D; mainly, it amounts

to using (D.6) again. Thus we present here only the result:

δD = δL − iN−1/2
[
δQ+φN + φ+

NδQ−]
+ iωN−1/2yN

[
2φ+

NφN − N
]

(64)

where

δQ− ≡ w
∑

k

xkψk δQ+ ≡ w
∑

k

xkψ
+
k .

Plugging (58) and (64) into (62),we get

D± = L± + iN−1/2

[(
Q+

f ∓ δQ+
)
φN − φ+

N

(
Q−

f ± δQ−)
+

(
N − 2φ+

NφN

) (
∂

∂yN

∓ ωyN

)]
(65)

where we mark the supercharges of the free Calogero model by the letter f . One can show
that the supercharges of the Calogero model in the oscillatory potential can be written as

Q± = Q±
f + δQ± Q̂± = Q±

f − δQ±

where Q̂± are the supercharges with different sign of ω.
Then it follows from (65) that

D+ = L+ + iN−1/2
[
Q̂+φN − φ+

NQ− − (
N − 2φ+

NφN

)
Q+

N

]
(66)

D− = L− + iN−1/2
[
Q+φN − φ+

NQ̂− +
(
N − 2φ+

NφN

)
Q−

N

]
. (67)

As in the free case, it is helpful to separate the centre-of-mass in the supercharges according
to (37). In addition to (37) and (39), one will then have for the quantities with inverted sign
of ω,

Q̂± = q̂± + Q̂±
C Q̂−

C = −φNQ−
N Q̂+

C = −φ+
NQ+

N. (68)

Plugging (37), (39) and (68) into (66) and (67), we get

L+ = D+ + iN−1/2
[
φ+

Nq− − q̂+φN − NQ+
N

]
(69)

L− = D− + iN−1/2
[
φ+

N q̂− − q+φN + NQ−
N

]
. (70)
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Now we are finally able to prove (28) using (69), (70) and (63). We will consider only
the commutation with L+ because the other one is just its Hermitean conjugation.

We will show that all the terms in the operator (69) commute with the superHamiltonian
in accordance with (28). The first nontrivial commutator of that kind is[

H, φ+
Nq−] = [

H, φ+
N

]
q− = [

2ωN , φ+
N

]
q− = 2ωφ+

Nq−.

For the term containing q̂+ we need the superHamiltonian (14) with ω replaced by −ω:

Ĥ = H − 4ωN + 2ω(1 + (N − 1)(Nl + 1)) [Ĥ, q̂±] = 0.

Then we can proceed with the commutators:

[H, q̂+φN ] = [Ĥ + 4ωN , q̂+φN ] = [Ĥ, q̂+φN ] = q̂+[Ĥ, φN ] = q̂+[−2ωN , φN ] = 2ωq̂+φN.

Finally, [
H,NQ+

N

] = [
H, φ+

NQ−
C

] = [
H, φ+

N

]
Q−

C = 2ωφ+
NQ−

C = 2ωNQ+
N.

If we now recall (63), we see that all the terms in the operator (69) commute with the
superHamiltonian in accordance with (28), so the latter is true.

Note that from (63) it follows that

[h,D±] = ±2ωD± (71)

where h = H−HC is the CM-independent part of the Calogero superHamiltonian (41), where
HC is given by (40).

Same as (28), equation (71) describes an oscillatory algebra and hence can be used for the
construction of the spectrum of the superHamiltonian h and proof of its integrability. Namely,
from (29) one can derive the ground-state wavefunction for h:

ψ0 = exp

−ω

2

 N∑
j=1

x2
j − y2

N

 N∏
i<k

|xi − xj |l .

Applying powers of the operators (66) and (67) q± from (37), and q̂± from (68) to this
wavefunction one can get the excited states of h, which parallels the construction from
subsection 2.3.

Equations (69) and (70) are also useful for the derivation of (31):

H(0) = TsL1 = TsL2 + const.

The first equality of (31) can be proved in the following way: taking into account (46), we get

TsL1 = Ts(L+L−) = N〈N |L+L−|N〉 = N〈N |[D+ + iN−1/2(φ+
Nq− − q̂+φN − NQ+

N

)]
× [

D− + iN−1/2
(
φ+

N q̂− − q+φN − NQ−
N

)]|N〉
= N〈N |iN−1/2

[
φ+

Nq− − Q+
N

]
iN−1/2[−q+φN − Q−

N ]|N〉
= −〈N | − φ+

Nq−q+φN + Q+
NQ−

N |N〉 = 〈0|q+q− + Q−
CQ+

C |0〉
= 〈0|h + HC |0〉 = H(0).

The second equality of (31) can be proved in a similar way:

TsL2 = Ts(L−L+) = N〈N |L−L+|N〉 = N〈N |[D− + iN−1/2
(
φ+

N q̂− − q+φN − NQ−
N

)]
× [

D+ + iN−1/2(φ+
Nq− − q̂+φN − NQ+

N

)]|N〉
= N〈N |iN−1/2[φ+

N q̂− − Q+
N

]
iN−1/2[−q̂+φN − Q−

N ]|N〉
= −〈N | − φ+

N q̂−q̂+φN + Q−
NQ+

N |N〉 = 〈0|q̂+q̂− + Q̂−
CQ̂+

C |0〉
= 〈0|ĥ + ĤC |0〉 = Ĥ (0) = H(0) + 2ω[1 + (N − 1)(Nl + 1)]

where the hat indicates the inversion of the sign of ω. We have used the fact that
D±|N〉 = 0; 〈N |D± = 0, because D(0)± = 0.

We see that (31) actually follows from the two supersymmetries of the model.
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4.4. The extension onto the root systems other than AN

In the papers [13–17] Dunkl operators for the root systems other than AN were introduced. The
formalizm of the present text can be extended to these more general models; in particular, one
can define analogues of the formulae (47)–(51). For the partial case (54) of the Clebsh–Gordan
coefficient, analogues of the operators (58) and (62) that commute with the superHamiltonian
can be considered.

For the construction of the super Lax operators for general root systems, one should use
the formalism of [28] (bearing in mind appendix A from the present text). Then it would be
interesting to see the relation between the analogues of operators (19) and (58) in this more
general case (i.e., generalization of (57) and (61)).
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Appendix A

In this appendix, we are to prove that for any Vkm = −Vmk it is true that∑
m�=k

Vkmψ+
k ψkKkm =

∑
m�=k

Vkmψ+
k ψm. (A.1)

Proof.∑
m�=k

Vkmψ+
k ψkKkm =

∑
m�=k

Vkmψ+
k ψk

[
ψ+

k ψm + ψ+
mψk − ψ+

k ψk − ψ+
mψm + 1

]
=

∑
m�=k

Vkm

[(
1 − ψkψ

+
k

)
ψ+

k ψm + ψ+
k

(
δkm − ψ+

mψk

)
ψk +

(
1 − ψkψ

+
k

)
ψ+

k ψk

−ψ+
k ψkψ

+
mψm + ψ+

k ψk

] =
∑
m�=k

Vkm

[
ψ+

k ψm − ψ+
k ψkψ

+
mψm

] =
∑
m�=k

Vkmψ+
k ψm

because the contraction of a symmetric object ψ+
k ψkψ

+
mψm and antisymmetric Vkm is

zero. �

Appendix B

In this appendix, we shall prove the following statement: for any i, j(
T̃ L

ij

)
αξ

(
T̃

(M)
ij

)
γβ

〈ζ |Cξ |β〉 = 〈ν|Cα|γ 〉(T̃ (M)
ij

)
νζ

(B.1)

where TL
ij is defined in (56); T(M)

ij in (44); Cξ in (54).
We will need an auxiliary statement:

KijCβ = Cα

(
T L

ij

)
αβ
Kij . (B.2)

Proof of (B.2): it follows from (12) and (13) that

Kijψ
+
i ψi = ψ+

j ψjKij Kijψ
+
k ψk = ψ+

k ψkKij k �= i, j

(no summation over repeated indices). Hence, one can check that

Kijψ
+
k ψk = ψ+

l ψl

(
T

(1)
ij

)
lk
Kij
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where the summation is only over l, and the matrix T(1)
ij is defined in (17). Then it follows that

KijCβ = KijRβkψ
+
k ψk = Rβk

(
T

(1)
ij

)
lk
ψ+

l ψlKij = Rβk

(
T

(1)
ij

)
lk
RmlRmnψ

+
n ψnKij

= (
T L

ij

)
mβ

CmKij = (
T L

ij

)
µβ

CµKij

where we have used the identities:

Rβk

(
T

(1)
ij

)
lk
Rml = (

T L
ij

)
mβ

(
T L

ij

)
Nβ

= 0

proved in [38].
Now we can use (B.2) to prove (B.1):(

T L
ij

)
αξ

(
T

(M)
ij

)
γβ

〈ζ |Cξ |β〉 = (
T L

ij

)
αξ

〈ζ |Cξ |β〉〈β|Kij |γ 〉 = 〈ζ |Cξ

(
T L

ij

)
ξα
Kij |γ 〉

= 〈ζ |KijCα|γ 〉 = 〈ζ |Kij |ν〉〈ν|Cα|γ 〉 = 〈ν|Cα|γ 〉(T (M)
ij

)
νζ

.

Appendix C

In this appendix, we are to prove that

D(M)
σα = 〈σ |Cξ |β〉Rξk

−i∂kδβα + i
∑
m�=k

Vkm

(
T̃

(M)
km

)
βα


= 〈σ |L|α〉 + iN−1/2M

∂

∂yN

δσα (C.1)

where L is the super Lax operator (19).

Proof. One can modify the first line of (C.1) in the following way:

D(M)
σα = 〈σ |Cξ |β〉Rξk

−i∂kδβα + i
∑
m�=k

Vkm

(
T̃

(M)
km

)
βα


= 〈σ |Cξ |β〉Rξk〈β| − i∂k + i

∑
m�=k

VkmKkm|α〉

= 〈σ |CξRξk|β〉〈β| − i∂k + i
∑
m�=k

VkmKkm|α〉. (C.2)

Taking into account definition (54) and the orthogonality of R, one can see that

CξRξk = RξkRξlψ
+
l ψl = (δkl − RNkRNl)ψ

+
l ψl = ψ+

k ψk − N−1
∑

l

ψ+
l ψl (C.3)

where no summation over k is implied. Thus,

〈σ |CξRξk|β〉 = 〈σ |ψ+
k ψk − N−1

∑
l

ψ+
l ψl|β〉 = 〈σ |ψ+

k ψk − N−1M|β〉. (C.4)

Plugging (C.4) into (C.2), we get

D(M)
σα = 〈σ |ψ+

k ψk − N−1M|β〉〈β| − i∂k + i
∑
m�=k

VkmKkm|α〉 = 〈σ |(ψ+
k ψk − N−1M

)

×
−i∂k + i

∑
m�=k

VkmKkm

 |α〉 = 〈σ |
−iψ+

k ψk∂k + i
∑
m�=k

Vkmψ+
k ψkKkm

+ iN−1M
∑

k

∂k − iN−1M
∑
m�=k

VkmKkm

 |α〉. (C.5)
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Plugging (A.1) into (C.5) and taking into account that the contraction of a symmetric object
Kkm and antisymmetric Vkm is always zero, we get

D(M)
σα = 〈σ |

−iψ+
k ψk∂k + i

∑
m�=k

Vkmψ+
k ψm + iN−1/2M

∂

∂yN

 |α〉

= 〈σ |L|α〉 + iN−1/2M
∂

∂yN

δσα.
�

Appendix D

In this appendix, we will determine the form of the operator (58). Plugging (57) into (58), we
get

D =
∑

M,σ,α

〈σ |L|α〉[|σ 〉〈α| + |Nσ 〉〈αN |] + iN−1/2 ∂

∂yN

∑
M,σ

M
[|σ 〉〈σ | + |Nσ 〉〈σN |]

≡ D(1) + D(2). (D.1)

One could rewrite the operator D(2) as

D(2) = iN−1/2 ∂

∂yN

∑
M,σ

M
[|σ 〉〈σ | + |Nσ 〉〈σN |]

= iN−1/2 ∂

∂yN

(
S + φ+

NSφN

)
(D.2)

where

S ≡
∑
M,σ

M|σ 〉〈σ | =
∑

M,σ,β

φ+
βφβ |σ 〉〈σ | =

∑
β

φ+
βφβ

(
1 − φ+

NφN

)
. (D.3)

It follows from (D.3) that

φ+
NSφN = φ+

N

∑
β

φ+
βφβ

(
1 − φ+

NφN

)
φN = φ+

N

∑
β

φ+
βφβφN =

∑
β

φ+
βφβφ+

NφN. (D.4)

Plugging (D.3) and (D.4) into (D.2), one obtains

D(2) = iN−1/2 ∂

∂yN

∑
β

φ+
βφβ. (D.5)

To get an explicit form of D(1) in (D.1), note: for any operator A of the form (21),∑
M,σ,α

〈σ |A|α〉[|σ 〉〈α| + |Nσ 〉〈αN |] = A − N−1/2
∑
k,m

Akm

[
ψ+

k φN + φ+
Nψm

]
+ N−1φ+

NφN

∑
k,m

Akm (D.6)

where N |σ 〉 = M|σ 〉;N |α〉 = M|α〉. The proof of this relation is rather long, and we will
not give it. In short, it uses the following auxillary relation:∑
M,σ,α

〈σ |A|α〉[|σ 〉〈α| + |Nσ 〉〈αN |] = A +
[
φ+

N,A
]
φN − φ+

N [φN,A] +
{
φ+

N, [φN,A]
}
φ+

NφN

that is true for any fermionic operator A, not necessarily bilinear, and follows from the
completeness of the basis (42) and anticommutation relations (36).
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Taking into account (D.6) for the operator L, we get

D(1) = L − N−1/2
∑
k,m

Lkm

[
ψ+

k φN + φ+
Nψm

]
+ N−1φ+

NφN

∑
k,m

Lkm. (D.7)

Since the super Lax operator L has the form (19), one can check that [27]∑
m

Lkm = −iQ−
k

∑
k

Lkm = iQ+
m

∑
k,m

Lkm = −iN1/2 ∂

∂yN

(D.8)

where the operators Q±
i are defined by (9) and yN by (35). Therefore,∑

km

Lkmψ+
k = −iQ+

∑
km

Lkmψm = iQ− (D.9)

where Q± are supercharges (3) with bosonic part (14).
Plugging (D.8) and (D.9) into (D.7) we get

D(1) = L + iN−1/2

[
Q+φN − φ+

NQ− − φ+
NφN

∂

∂yN

]
. (D.10)

Bringing together (D.10), (D.5) and (D.1) one sees that

D = L + iN−1/2

Q+φN − φ+
NQ− +

∑
β

φ+
βφβ − φ+

NφN

 ∂

∂yN


= L + iN−1/2

[
Q+φN − φ+

NQ− +
(
N − 2φ+

NφN

) ∂

∂yN

]
.
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